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THE STABILITY OF NEUTRAL SYSTEMS IN THE CASE OF A MULTTPLE 
FOURTH-ORDER RESONANCE* 

A.L. KUNITSYN and A.A. PEPEZHOGIN 

The stability of the steady motions of multiparametric systems is investi- 
gated for the critical case of N pairs of purely imaginary roots when 
several internal fourth-order resonances interact with each other. The 
earlier investigations (see the survey /l/) covered only the interaction 
of odd-order resonances. In general, the problem of stability when there 
are even-order resonances is more complicated; even in the case of the 
simplest, single fourth-order resonance there is no algebraic criterion 
of stability /2/. 

1. Consider a system of 2N-th order for the critical case of N pairs of different, 
purely imaginary roots t_hj(hj2 < 0;j = 1.. . ..A’). which can be written in the form /l/ 

9 

fL’=?d -i- j* UC” (u, I$ u’ zzc - hu + x V(f) (u, u) (1.1) 
1=2 

h = diag (h,, . . ., AR) 

where u = (u,, . . ,. MN). U = (II,, . ., UN) are complex conjugate variables and u(l), V(‘l are complex 
conjugate vector forms of the I-th order. 

Let the first n < N eigenvalues of system (1.1) be connected by x fourth-order 
resonance relations 

(P,,. _I> = 0, P = I, . . . , x (1.2) 

Here A=(&. . . . . &,) is the eigenvalue vector and I', = (pv,, . . ., &,,)is an integer-valued 
vector with relatively prime components, some of which may beequalto zero, and 1 P, 1~ ( pvl \ + 

. . . + I pm I = 4. We shall also assume that (1.2) does not give rise to other resonances of 
the same order and that there are not resonances of the order less than the fourth. 

Following the generally accepted method of investigating the stability in the resonant, 
as well as in the non-resonant case, we will use a series of known variable substitutions /l/ 
to reduce system (1.1) to its normal form with an accuracy up to and including third-order 
terms. In the polar coordinates rj, cpj the system will have the form 

*Prikl.Matem.I4ekhan.,49,1,72-77,1985 . 
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x N 
1 
?I.'"'= 

x 
R,Q,. (W -!- r, 

z 
C&j + . 

\‘=I 
(1.3) 

N 

rl’= 2r, X Cajrj + . . . a=n+l,...,N 
jz.1 

raqa’ = - ih,r, + r, 5 G?ajl.j + . . . 
j=l 

Qv. W = avt cos % + b,i sin % 
(Qvs ($v) = 0, if pvs = 0) 

The system obtained from (1.3) by neglecting the terms which were not written out, is 
called the model system /l/ 

2. We shall consider the interaction of the fourth-order resonances according to two 
schemes. 

The first interaction scheme 

<pv*, a*> + (P,, A) = 0, v = 1, . . ., x (2.1) 

is characterized by the presence of a vector component of the eigenvalues n* = (h,, . . ., AJ 
common to all resonance relations. Therefore the integer-valued vector p,* = (PVl, . . ., Pv,,) 
will have all, essentially non-zero, relatively prime components, and the integer-valued 

vector PV = (p,,+,, . . ., 14 will onlyhave a proportion of the non-zero terms so that the 
products (p,, A> will not contain the common eigenvalues representing the components of the 
vector A = (hBil, ., A,). 

The other scheme of interaction is of the "chain" type: 

<pV-,*, _&*) + <P,, II,,> = 0, Y = 1, . . .,x 

A,= (hlY, . .7 li,,), P, = (pw,, . . .I P,,,) 
Av* = (h,,v-~,, . ., L,.), Pv* = (pvn,+, . . ., pm,,) 
JP,_,* 1 + 1 P,] = 4, 0 < k, b< n, - I;, 1, = 1, n, = n 

(2.2) 

Every pair of resonance relations contains k.+ common eigenvalues (L,,h,& take values 
from the set f,...,n). We note that the eigenvalues hl,,...,&,,,+ appear only in the v-th 
resonance relation (V = I,...,%). This also refers to the eigenvalues FL,,,_~~,.. .,k at Y = 1 

and &_k,+l? . . .1 & at Y = x. It can be shown #at by virtue of the condition given above, 

of the lack of other fourth-order resonances and of lower-order resonances, n, in (2.1) can 
only take the values 1 or 2 and we must have k, = 1 in (2.2). When investigating further 
interactions according to scheme (2.1), we shall restrict ourselves to the most important 

practical case no = 1. 
To obtain the sufficient conditions of instability and asymptotic stability, we can use 

in each of the cases considered the Lyapunov function in the form /3/ 

2W = ylrl -t . + ynrn + r,+l + . . + TN (2.3) 

where the first sum represents the integral of the resonant part of the model system (i.e. 
the system obtained from (1.3)) when ~.j = dkj = O;k,j = 1. . . . . N). This means that the constants 

YS obey the equations 

&,y,=O, s&bvs,,=O, v=i,...,x (2.41 

Differentiating (2.3) we obtain, by virtue of (1.3), taking (2.4) into account, 

W’= 5 Yr, 5 Csj’j i a=$+lrzjil cajri i- . . . 
r=1 j=l 

(2.5) 

where the terms not written out are of at least the third order of smallness. 
In the case of the resonances (1.2) without common frequencies, the model system decom- 

poses into x independent subsystems, and system (2.4) into x pairs of independent equations. 

In the case when every resonance relation contains at least three eigenvalues and the rank of 
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the matrix of the coefficients a,.%, bv, for every pair of independent equations composed of 
(2.4) is equal to two, the problem of stability can be solved using the following lemma proved 
in /3/ while considering a single resonance of odd order. 

LenmJa. The necessary and sufficient condition for the system of equations (2.4) to have 
a strictly positive (negative) solution in ys is, that at least one pair of vectors exists 

for every v = 1,...,x 

av = h-j, avi,, GA bv = (bv,, bvk, b,,) 
j, k. I = 1, . . ., n;i#k#l,n>3 

for which there is no change of sign within the series of numbers Dt,V, Dlj~,Djkv, representing 

the covariant components of the vector product av x bV. 
As was shown in /4/, the conditions of the lemma also remain valid in the case of the 

resonances conforming to one of the types shown above. Here the highest rank of the matrix 
of system (2.4) is 2x, therefore n -2x constants yI can be chosen arbitrarily. 

Using the lamma and the function (2.3) we can easily obtain, with help of Lyapunov's 
theorems on instability and asymptotic stability, the sufficient conditions of instability 
and asymptotic stability. 

Theorem 1. Let system (1.3) describe one of the following types of multiple resonance: 
1) independent, 2) interacting according to the scheme (2.1) with hO = 1, 3) interacting 
according to the scheme (2.2) with kv = 1, and let the conditions of the lemma hold for the 
resonance coefficients of the normal form flvs, Y8. b Then, provided that ,i -2x (n >2.~), the 
positive constants chosen from yl. . . ., y,,, and satisfying the equations (2.4), can be set out 
in such a manner that the quadratic form appearing in (2.5) will be negative definite, and 
the trivial solution of system (1.3) will be asymptotically stable. 

Theorem 2. When fourth-order resonance relations of one of the above types exist, then 
the trivial solution of system(l.3) will be unstable provided that one of the following con- 
ditions holds: 

a) the condition of the lemma does not hold for the resonant coefficients, and constants 
y1, * . ** b? satisfying Eq.(2.4) can be chosen so that the quadratic form appearing in (2.5) 
is sign definite; 

b) the condition of the lemma holds for the resonant coefficients and the quadratic form 
mentioned above can be made sign definite by choosing n - 2% negative coefficients for the 

set yl, . . ., Yn, satisfying Eqs.(2.4): 
c) the condition of the lemma holds for the resonant coefficients, and the quadratic form 

mentioned above can be made positive definite by choosing n-2x positive constants from the 

set Y~,...,Y~, satisfying the equation (2.4). 

Note. When aYs = by8 = 0 (Y = 1, . ., x; s = 1, . . ., n) I we have a non-resonant case which was 
basically considered in /5, 6/, while when ckj= dlij=o (k, j= f,...,~) , the problem will be 
solved in the same manner as in the case of the multiple, odd order resonance. 

3. We will illustrate the efficiency of the proposed method by considering a special case 
of system (1.3)n =N = 3 for the interacting resonances 

h, + 3h, = 0, 3h, + h, = 0 (3.1) 

In spite of the fact that the conditions ofthe lemma lose thier meaning here, we can show 
that in this case the necessary and sufficient conditions for a strictly positive (negative) 
solution of (2.4) to exist have the form 

sA - a,rb,, = 0, a,,bp, - a18bsl = 0 (3.2) 

b,,b,, < 0, bl,b,s < 0 

and the constants yl,ys can be expressed in terms of the arbitrary constant ys 

(3.3) 

We note that the equations in (3.2) are always realized in Hamiltonian systems, and the 
inequalities represent the necessary and sufficient conditions for stability of the resonant 
partofthe model system. 

The matrix M of the quadratic form from which expansion (2.5) beings can, in the present 
case, be written in the form 

M = IIM,B II1 Ma0 = -k&g + y@a; a, fi = 1,2, 3 (3.4) 

Using the Sylvester criterion we obtain the following conditions of negative definiteness 
of the matrix M: 



cl1 < 0, F = - (-&&nc,,c,e + 6,‘) > 0 (3.5) 

Using Theorem 1 we conclude that the inequalities (3.5), conditions (3.2) and us>0 
together yield the sufficient conditions for asymptotic stability. The form of the inequali- 
ties obtained enables us to conclude that they are consistent. Moreover, in the present 
case the conditions of asymptotic stability can be obtained without resorting to selecting 
the value of the arbitrary constant ~3. 

When the signs of the first and last inequality of (3.5) are changed, the trivial solution 
of (1.3) will, according to Theorem 2 (case c), be unstable. We see that the trivial solution 
will be unstable whether or not conditions (3.2) hold, as long as the inequalities F> 0, 
c,,G<O, are satisfied, since cases a) and b) of Theorem 2 hold. 

4. We shall now consider another possible approach to determining the instability of 
system (1.3) in the case of the interaction of the resonances according to schemes (2.1) and 
(2.2). 

Theorem 3. Let us assume that one of the resonances interacting according to scheme 
(2.1) or (2.2), with v = fi, has its instability exposed by the presence of an invariant ray 
of the truncated model system of equations. In this system correspondingto(1.3),c,j = dsi = 0 
for s = l,...,n; j = R i l,...,K, and also for those s, j = 1, . ., n, for which psl = pe_lI = 0. 
Then the trivial solution is unstable, provided that the following condition holds for the 
remaining resonance relations in the case of interaction (2.1): 

IPY\> 1, v#B 

while in the case of interaction (2.2) none of the conditions 

(4.1) 

hold. 
The validity of this assertion follows from the presence of an increasing particular 

solution of the model system corresponding to (1.3). The variables corresponding to one of 
the resonances increases as an invariant ray, and the remaining variables remain zero. This 
in turn guarantees the instability* (*See Medvedev S.V. A proof of the lemma on instability. 
Moscow, Dep. v VINITI, 12.3.82, No.1088-82,1982) of the zero solution of the complete system 
(1.3). 

Theorem 3 can be used for an important special case, namely for canonical systems (the 
normalizing variable transformations shown can be taken in canonical form and are carried 
out according to the algorithm described in /l/). The case corresponds to the following 
choice of parameters in (1.3): 

(I vs = 0, b,, = p,%,b, (Y = 1, . ., x; s = 1, . ., n) (4.3) 

clj = 0, dfj = dj, (I. j = 1, . . A’): 

Let, for examples, one of the resonances (2.1) be strong when v=B, with the other 
resonances missing. This, according to /l/, means that the following conditions of the 
presence of a particular solution in the form of an invariant ray holds: 

Part of the components ~6, (1 = no + l,....n) of the resonance vector P,, corresponding 
to the frequencies not appearing in the resonance relation chosen, vanishes. Therefore, the 
corresponding coefficients d,, (li = l....,n) will not affect the magnitude of the right-hand 
side of the inequality as they would if these coefficients were missing altogether. This 

shows clearly the feasibility of applying in this case the first assertion of Theorem 3. 
The efficiency of the second assertion of the theorem is proved in the same manner. 

Exai?@ t? . Let us consider a photogravitational, circular bounded three-body problem 
differing from the classical case in the fact that the positively gravitating point is also 
subjected to the pressure of light from one of the main bodies /7/. The problem admits of 

seven positions of relative equilibrium, five of which coincide with the known libration 
points /8/. In /9/, in the region of stability of the sixth and seventh libration point, to 
a first approximation, an interaction of two strong resonances, X,r 3h, = o and 3X&- ?.s = 0. 
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was found. Taking the second of the xesonance relations (v= p= 2), as the fundamental reson- 

ance, we obtain iPlj = 3>1, But this means that the case of interaction considered here 

satisfies al-1 the conditions of Theorem 3; therefore the libration points shown are unstable. 
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SMALL ~IBRA~rON~ OF ONE-~~MEN~rONAL ~~~N~ BODIES* 

V.V. POPOV 

Problems of the transverse vibrations of moving strings, hoses with flowing 
liquid, as well as bodies that can be represented in the form of a set of 
interacting strings moving at different velocities are examined. It is 
assumed that there are not tangential stresses between the strings. The 
vibrations are described by a second-order linear differential equation 
whose coefficients are obtained by summing the corresponding parameters of 
the separate strings. The distinctive feature of this kind of system is 
the difference in the wave propagation velocities in the forward and 
reverse directions. 

A transformation is presented that enables the problem of vibrational 
processes in a moving body with conditions given on fixed boundaries to be 
xeduced to a boundary value problem for a string at rest. Questions 
concerning the critical velocities , the free vibration energy of the 
maving body, and the type of dissipative term are considered. Analytic 
solutions are given for problems regardfng free vibrations and the steady- 
state regime of forced vibrations under the action of a farce varying 
sinusoidally with time. 

1. Fomulation of the problem.. In a linear approximation we will considex the 
transverse vibrations of a body (or system of bodies) moving uniformly and rectilinearly along 
the x axis in the ground state. In the simplest case, the equation of a taut filament (string) 
moving at a velocity t is obtained from the equations of the string at rest 

P&t - Tzz*= F fl.1) 

(the notation is standard) by replacing the partial desivative with respect to the time &f& 
by the substantive derivative d!dt + ud:'dx 

*Prikl.Matwn.Mekhan..49,L,78-84,1985 


